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Biocatalysis is a ubiquitous feature of life, predominantly e A
regulated by allosteric principles. Binding of an effector molecule o I
to a distant site induces a structural change which is communicated
to the active center, thereby influencing enzymatic activity. Allo- c
steric activation and inhibition have been successfully applied to G

o

develop regulated ribozymés? A recent study suggests that this u

principle might be operative also in natdrall published examples,
however, utilize RNA-cleaving or -ligating ribozymes, making a
generalization of the structural and mechanistic principles involved
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difficult. In this communication, we describe the first example in Stem! A uu_‘-(i A
which a ribozyme-catalyzed reaction between two small organic s (@Q) . uC.;u‘
substrates is allosterically regulated by a small organic effector 3:R= Sy

molecule. . ) o Figure 1. Unregulated and regulated Dielglder ribozymes. {) Parent

Our group has previously described artificial ribozymes that ribozyme$ (2) ribozyme and theophylline aptam&joined by combinatorial
catalyze the formation of carbettarbon bonds between anthracene library of potential communication modules3)(selected theophylline-
and maleimide derivatives by Diel#\lder reactiorf? These depende_nt DielsAIder ribozyme. Black:_ Diels-Alder ribozyme. Red:
ribozymes are active both as self-modifiers (anthracene covalently communication modle. Blue: Theophylline aptamer. Anthracene attached

o o\ ” . to the B-end and a primer binding site attached to ther®d are in brackets.
tethered to the catalyst and maleimide derivatives free in solution)
and as true catalysts displaying multiple turnover (both substrates
free in solutionf For the most-characterized Dieldlderase
ribozyme1, the catalytic center is formed by the nucleotides of Q\ /
the asymmetric internal bubble and the nucleotides of H@&GAG- N
end (Figure 1:1°As stem Il was found to be completely variable QE
in sequence and leng®ht was chosen as the attachment site for a RNA
previously described theophylline-binding RNA aptariefhese
two functional modules have now been combined in a way that
binding of theophylline to the RNA activates the Dieklderase.

To identify communication modules optimally suited for the pres-
ent combination of ribozyme and aptaniétywo stretches of five
random nucleotides each were inserted in a combinatorial ay (

The resulting library contained® (~10°) different potential
communication modules between the ribozyme and theophylline
aptamer. The '3end of the constructs was extended to generate a
primer binding site for enzymatic amplification. The previously
establishedh vitro selection procedure for DietsAlderases, which
involved anthracene covalently tethered to the RNA, was adapted
to allosteric selection in analogy to schemes developed by the
Breaker lab3

The pool of DNA templates was transcribed by T7 RNA
polymerase in the presence of anthracepely(ethylene glycob-
guanosine initiator nucleotidés? thereby generating librarg of
10 different RNA-tether-anthracene conjugates. This pool was then tfm ;., :o :, ,:, fs : :
iteratively deconvoluted over seven rounds of selection and Figure 2. Selection scheme and progress. For details, see online Supporting
amplification implementing two different kinds of counter-selection  |nformation.
to remove the constitutively active ribozymes (i.e., those that are
active both in the presence and in the absence of theophylline). (Figure 2). An unselectable substratepentyl maleimide (NPM),
During counter-selections in rounds-3, the anthracene-initiated  which lacks the biotin residue, was reacted with the RNA pool,
pool RNA was reacted with biotin maleimide in the absence of thereby quenching rather than physically removing the constitutively
theophylline, and reacted RNA molecules were removed from the active molecule$®
pool by immobilization on streptavidin agarose. In subsequent Excess NPM was then removed by ether extraction. Following
rounds, the counter-selection step was based on a different strategyhis counter-selection, theophylline and biotin maleimide were added
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3d (green vs red curve). The consumption of anthracene reaches
two turnovers within 1 h. Interestingly and despite the two different
counter-selection strategies applied, the reaction rat8 farthe
absence of theophylline is still 3 times higher than the background
(no RNA present, red curve vs orange and purple curves). This
non-negligible reactivity in the absence of the effector seems to be
. related to the exceptionally stable tertiary structure of the Biels
Alderase ribozymé? Finally, no significant activation by caffeine
was detected (Figure 3d, blue vs red curve).

In conclusion, this is, to our knowledge, the first allosterically
regulated ribozyme acting on two small (non-RNA) substrates.
Furthermore, this is the first report of allosteric regulation of a
catalytic Diels-Alder reaction. The chromophoric and fluorophoric
properties of anthracene render this system attractive for the
development of assays for a variety of analytes that could be used
as effectors, and the observed multiple turnover is equivalent to
signal amplification. The primary structures of all three principal
components of this allosteric ribozyme, namely, catalytic domain,
Figure 3. Diels—Alder catalysis by RNA3 in the absence and presence ~Communication module, and allosteric site, have been isolated from
of 100uM effector (unless otherwise stated). (a) Fluorescetticee curve synthetic combinatorial librariésand are not found in nature. While
for the 'singlt'e-turnove'r reaction of RNA-tethered anthrgcgne with biotin a”ostericity is a common phenomenon in biochemistry, Synthetic
maleimide with and without theophylline. Parent sequehissincluded as — ohamjsts typically cannot reversibly switch on or off catalysts by
reference. (b) Dependence of the reaction rate on the concentration of o .

external effectord®-18 This ribozyme may arguably be regarded

theophylline and caffeine (single turnover). (c) HPLC analysis of multiple- ; '
turnover reactions aftel h reaction time. (d) Absorbanegime curve for as a prototype in the development of fully synthetic molecular
signaling cascades.
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the multiple-turnover reaction catalyzed By
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